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Abstract: A spreadsheet program, such as Microsoft Excel, has proven to be an excellent tool for the study, 

implementation, and visualization of a wide range of mathematical concepts, as well as for mathematical modeling of 

diverse applications. We focus on the use of Excel’s powerful Data Table tool to present new and creative ways to study 

and teach a wide range of mathematical topics. We draw our topics from algebra, calculus, linear algebra, probability, 

statistics, and numerical analysis. Each is accompanied by files that incorporate interactive graphics created in Excel. 

We also present additional ideas for educators and their students to pursue. 

 

Introduction 

 

Ever since the initial spreadsheet program, VisiCalc, was launched in 1980, and especially 

following the inclusion of added features and graphic capabilities in subsequent spreadsheets, the 

educational community has constantly found innovative ways to use spreadsheets for the study and 

teaching of mathematics [1,2,5,7]. In this paper we provide some examples for the creative use of the 

Data Table tool of Excel and other spreadsheets for the study and teaching of mathematics, and 

provide suggestions for further areas of application of this valuable tool. 
 

Example 1. Geometric Growth 

 

To describe the use of the Data Table command, our first example is a standard compound interest 

model [5]. It is often advantageous to introduce a new topic through the use of a familiar example 

that we can also examine using other methods, thereby allowing us to both verify and compare the 

approaches. Our model assumes that we enter a one-time deposit that earns annual compound interest 

at a given rate for 10 years.  

In Figure 1(a) we first enter the principal and annual interest rate in Cells B1:B2. We use Column 

A to count years, while we find the annual starting balance and interest in Columns B-C. In Figures 

1(a) and 1(b) we see the resulting output and the underlying formulas in Columns A:C. Cell B15 

contains the resulting 10th year balance. 

Now, suppose that we want to create a summary of the 10th year balance for different annual 

interest rates. Of course, we could simply change cell B2 repeatedly, and manually write down the 

resulting balance. However, the Data Table command can do this for us automatically. We create the 

data table in the Block E5:F15. In Column E we leave the top cell E5 blank, and then enter in the rest 

of Column E the interest rates that we desire to examine. While we have used formulas to increment 

the rates in steps of 1%, we can enter whatever rates are desired.  In Cell F5, we enter a formula, 

=B15, that reproduces the 10-year balance for the current rate. 
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To issue the Data Table command, we first use our selection device to select the Block E5:F15, 

as shown in Figure 2. We then select the Excel command options Data, What If Analysis, Data Table. 

In the resulting Data Table display, we click in the Column Input cell box, and then click on the rate 

cell, B2. After we then click on OK, Excel repeatedly inserts each of the rate values in Column E into 

Cell B2, and records the corresponding 10th year balances in Column C, as shown in Figure 1(c). 

 

                      

 

   Figure 1(a). Savings Layout   Figure 1(b). Savings Formulas             Figure 1(c). Data Table 

 

 

Figure 2. Data Table Display 

 

If this is the first time for someone to use the Data Table, it is a good exercise to create an 

additional column of the 10th year values by using the closed formula 10(1 )P r+  or one of Excel’s 

built-in financial functions. We shall then see that the result agrees with our Data Table model.  

Students can also find similar uses for the data table in the study of annuities and other financial 

applications, as well as in such areas as population growth and the spread of epidemics. We leave the 

Excel file in [S1] for readers to explore further. 

  

Example 2. Cramer’s Rule 

 

Cramer’s Rule [9] is a well-known procedure that uses determinants to solve a linear system of n 

equations in n unknowns. Unfortunately, doing this procedure by hand is both tedious and very 

inefficient for 3n  . However, using Excel’s determinant and matrix functions, together with the 

Data Table tool, makes the process quite accessible and efficient, even for rather large values of n. 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A B C D E F

prin 1000

rate 0.05

year balance interest rate 10-year

0 1,000.00 50.00 1,628.89

1 1,050.00 52.50 1%

2 1,102.50 55.13 2%

3 1,157.63 57.88 3%

4 1,215.51 60.78 4%

5 1,276.28 63.81 5%

6 1,340.10 67.00 6%

7 1,407.10 70.36 7%

8 1,477.46 73.87 8%

9 1,551.33 77.57 9%

10 1,628.89 10%

data table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A B C D E F

prin 1000

rate 0.05

year balance interest rate 10-year

0 =B1 =$B$2*B5 =B15

=1+A5 =B5+C5 =$B$2*B6 0.01

=1+A6 =B6+C6 =$B$2*B7 =0.01+E6

=1+A7 =B7+C7 =$B$2*B8 =0.01+E7

=1+A8 =B8+C8 =$B$2*B9 =0.01+E8

=1+A9 =B9+C9 =$B$2*B10 =0.01+E9

=1+A10 =B10+C10 =$B$2*B11 =0.01+E10

=1+A11 =B11+C11 =$B$2*B12 =0.01+E11

=1+A12 =B12+C12 =$B$2*B13 =0.01+E12

=1+A13 =B13+C13 =$B$2*B14 =0.01+E13

=1+A14 =B14+C14 =0.01+E14

data table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

E F

rate 10-year

1,628.86

1% 1,104.59

2% 1,218.96

3% 1,343.88

4% 1,480.21

5% 1,628.86

6% 1,790.80

7% 1,967.10

8% 2,158.87

9% 2,367.31

10% 2,593.72

data table

rounding used
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For an n n  system,  

 

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

1 1 2 2

k k n n

k k n n

i i ik k in n i

n n nk k nn n n

a x a x a x a x c

a x a x a x a x c

a x a x a x a x c

a x a x a x a x c

+  +  +  =

+  +  +  =

+  +  +  =

+  +  +  =

  

 

Cramer’s Rule states that the value, kx , of the kth component of the solution, can be found by dividing 

the determinant that results by replacing the entries of the kth column of the n n  matrix of 

coefficients with the column of constants by the determinant of the coefficients, or 

 

 

11 12 1 1 11 12 1 1

21 22 2 2 21 22 2 2

1 2 1 2

1 2 1 2

n k n

n k n

k

i i i in i i ik in

n n n nn n n nk nn

a a c a a a a a

a a c a a a a a

x
a a c a a a a a

a a c a a a a a

=
  

 

In Figure 3 we illustrate our procedure for the 5x5 case. We enter the system in the block A4:F8 

with Row 3 used as a counter for k. We then enter a value for k in Cell D1. In the block A10:F14 the 

entries in Column k of A are replaced by the column of constants to produce the matrix
kA . To do 

this, in Cell A10 we enter =IF(A$3=$D$1,$F4,A4), and then copy it throughout the Block A10:E14. 

We compute the determinant of A in Cell B1 by =MDETERM(A4:E8) and the determinant of
kA in 

Cell F1 by =MDETERM(A10:E14).  

We next create the Data Table in the Block I3:J8, entering the formula =F1/B1 for kA A  in Cell 

J3, and values for k = 1, 2, 3, 4, 5 down Column I. We then issue the Data Table command, selecting 

the Block I3:J8 and Column Input Cell, D1. Figure 3(b) shows the resulting display. Modifying the 

design for larger systems is straightforward. We have used this successfully for systems of as many 

as 20 variables. 
 

    

   Figure 3(a). Cramer’s Rule Model    Figure 3(b). Cramer Data Table 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B C D E F G H I J

|A| 160 k 2 |Ak| -320

k    xk

1 2 3 4 5 con -2

3 2 1 8 -3 13 x1 1

5 -2 1 1 -3 22 x2 2

2 0 2 -3 -1 9 x3 3

1 1 -1 2 3 7 x4 4

-1 3 1 0 3 -1 x5 5

3 13 1 8 -3

5 22 1 1 -3

2 9 2 -3 -1

1 7 -1 2 3

-1 -1 1 0 3

data table

coefficient matrix A

matrix Ak

1

2

3

4

5

6

7

8

9

10

11

12

13

14

H I J

k    xk

-2

x1 1 4

x2 2 -2

x3 3 3

x4 4 1

x5 5 2

data table
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Experimenting with the size of the system makes a good related project, as will discovering other 

uses in linear algebra and matrix theory for Excel’s determinant function. We leave the Excel file in 

[S2] for readers to explore further. 

 

Example 3. Numerical Integration via Trapezoidal Rule 

 

Here we present the use of the Data Table tool to significantly condense lengthy series of 

calculations. In calculus we examine a variety of ways to approximate a definite integral as the area 

beneath a curve. Using the trapezoidal rule [4,8], we approximate the area under equally-spaced 

segments of a continuous curve by trapezoids, as shown in Figure 4(a), using the formula

( ) ( ) ( )( ) / 2A b a f a f b − + . 

  

           

           Figure 4(a). Trap: n = 1  Figure 4(b). Trap: n = 3     Figure 4(c). Trap: n = 9 

 

We use the trapezoidal rule to obtain an approximation for an integral by dividing the interval 

[ , ]a b   into n equal subdivisions. As n increases we will get increasingly better approximations until 

round-off error intrudes. However, it can be inconvenient or impossible to increase the number of 

rows in a spreadsheet model beyond a certain number of divisions. We can overcome much of this 

difficulty by using a Data Table. For our illustration, we use the function: f(x) = 1/x2, 1 ≤ x ≤ 3. 
2( ) 1/ ,1 3f x x x=    . Here we carry out 10,000 computations by using only 1,000 cells. 

In Column B of Figure 5(a) we enter the number, n, of major subdivisions (here n = 10) and the 

values of a and b. We also compute the interval widthb a− , the subdivision width or gap as

( ) /gap b a n= − . We divide each major subdivision into 1000 small divisions, using a step size of

/1000step gap= . Next, in Columns D:I we compute the trapezoidal areas for the small segments of 

the interval starting with the entry in Cell E3. We leave details left to readers. The basic Trapezoidal 

Rule formulas are given in Figure 6. 

We now create a 10-step Data Table in Columns L:M. Column L consists of the major interval 

starting points. In Cell M3 we compute the sum of Column I as =SUM(I3:I1002). We then issue the 

Data Table Command, using E3 as the Column Input cell. After this the overall resulting area 

approximation is found in Cell M15 as =SUM(M4:M13). We then reproduce this in Column A where 

we compare it with exact area found by integration. Figure 5(b) shows the initial Data Table. 

 

(a,f(a))

(b,f(b))

a b
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                                  Figure 5(a). Trapezoidal Model                                     Figure 5(b). Data Table 

 

 
Figure 6. Trapezoidal Formulas 

 

There are various other numerical integration algorithms (e.g., Simpson’s method) that we can 

implement similarly. In addition, this is a good place to examine the topic of round-off and similar 

topics that arise in numerical analysis. We leave the Excel file in [S3] for readers to explore further. 

 

Example 4. Eigenvalues and Characteristic Polynomial 

 

A major topic in linear algebra is that of eigenvalues and eigenvectors of matrices [9]. A real 

number, λ, is an eigenvalue of an nn real matrix A  if there is a non-zero vector v  for which Av v=

. Any vector v   that satisfies this equation is called an eigenvector corresponding to . To find the 

real eigenvalues of a square matrix A , we note that if ( )Av v I v = = , and ( ) 0A I v− = . This 

happens when the determinant 0A I− = . We use this fact to find the real eigenvalues of a n n   

matrix A. 

We illustrate our process in Figure 7 with a 44 matrix, and employ a data table to evaluate points 

of the characteristic polynomial ( )f x A xI= − . The zeroes, , of this function then are the 

eigenvalues of A. We enter the values of A in the Block B2:E5, and formulas to compute the entries 

of A I− in the block B7:E10. We compute A I−  in Cell E1. 

We next use the Data Table command to compute the (x,y) coordinates of f(x), with steps in the x-

values of size 0.1, over the interval -4  x  4. Cell B2 is the column input cell for the data table.  

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J K L M

k xl xr f(xl) f(xr) area n x area

num 10 1 1.0 1.0002 1 0.9996 0.000200 0.166667

a 1 2 1.0002 1.0004 0.9996 0.9992 0.000200 1 1.0 0.166667

b 3 3 1.0004 1.0006 0.9992 0.9988 0.000200 2 1.2 0.119048

intv 2 4 1.0006 1.0008 0.9988 0.9984 0.000200 3 1.4 0.089286

gap 0.2 5 1.0008 1.001 0.9984 0.998 0.000200 4 1.6 0.069444

step 0.0002 6 1.001 1.0012 0.998 0.9976 0.000200 5 1.8 0.055556

7 1.0012 1.0014 0.9976 0.9972 0.000199 6 2.0 0.045455

area 0.666667 8 1.0014 1.0016 0.9972 0.9968 0.000199 7 2.2 0.037879

exact 0.666667 9 1.0016 1.0018 0.9968 0.9964 0.000199 8 2.4 0.032051

error 6.42E-09 10 1.0018 1.002 0.9964 0.996 0.000199 9 2.6 0.027473

11 1.002 1.0022 0.996 0.9956 0.000199 10 2.8 0.023810
12 1.0022 1.0024 0.9956 0.9952 0.000199

13 1.0024 1.0026 0.9952 0.9948 0.000199 Area 0.666667
14 1.0026 1.0028 0.9948 0.9944 0.000199

input/output

Trapezoidal Rule data table 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

K L M

n x area

0.166667

1 1.0

2 1.2

3 1.4

4 1.6

5 1.8

6 2.0

7 2.2

8 2.4

9 2.6

10 2.8

Area 0.000000

data table

1002

A B C D E F G H I J K L M

1000 1.1998 1.2 0.6947 0.6944 0.000139

2

3

4

D E F G H I

k xl xr f(xl) f(xr) area

1 1 =E3+B$8 =1/E3^2 =1/F3^2 =$B$8*(G3+H3)/2

=1+D3 =E3+$B$8 =E4+B$8 =1/E4^2 =1/F4^2 =$B$8*(G4+H4)/2
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  Figure 7(a). Char. Polynomial (layout)  Figure 7(b). Char. Polynomial (Formulas) 

 

In Figure 8 we see the initial values of the resulting output. From this we can use Columns G:H 

to generate the xy-graph, shown at the left in Figure 9(a). 

 

 

Figure 8. Characteristic Polynomial from Data Table 

 

     

Figure 9(a) Char. Polynomial       Figure 9(b). Estimate of Zeroes                    Figure 9(c). Zeroes 

 

From the graph of Figure 9(a), we can estimate manually the values of the eigenvalues as the 

points where the curve crosses the x-axis as in Figure 10(a). We then use the Data Table command 

again to get the y-values corresponding to these points, as shown in Figure 10(b) where we have used 

rough estimates of the zeroes of the function. We incorporate these into our graph as markers only in 

Figure 9(b). We could use estimates of x-values other than those in our given list. 

 

            

Figure 10(a).Estimates            Figure 10(b). Data Table       Figure 10(c). Solver 

1

2

3

4

5

6

7

8

9

10

11

A B C D E F G H

λ 2 |A–λI| = -38 x f(x)

A 1 5 1 1 -38

1 -2 1 0 -4.0

1 1 0 1 -3.9

1 1 1 1 -3.8

-3.7

A–λI -1 5 1 1 -3.6

1 -4 1 0 -3.5

1 1 -2 1 -3.4

1 1 1 -1 -3.3

-3.2

1

2

3

4

5

6

7

8

9

10

11

A B C D E F G H

λ 2 |A–λI| = =MDETERM(B7:E10) x f(x)

A 1 5 1 1 =E1

1 -2 1 0 -4

1 1 0 1 =0.1+G3

1 1 1 1 =0.1+G4

=0.1+G5

A–λI =B2-B1 =C2 =D2 =E2 =0.1+G6

=B3 =C3-B1 =D3 =E3 =0.1+G7

=B4 =C4 =D4-B1 =E4 =0.1+G8

=B5 =C5 =D5 =E5-B1 =0.1+G9

=0.1+G10

1

2

3

4

5

6

7

8

9

10

11

A B C D E F G H

λ 2 |A–λI| = -38 x f(x)

A 1 5 1 1 -38

1 -2 1 0 -4.0 88

1 1 0 1 -3.9 72.32

1 1 1 1 -3.8 58.23

-3.7 45.64

A–λI -1 5 1 1 -3.6 34.44

1 -4 1 0 -3.5 24.56

1 1 -2 1 -3.4 15.91

1 1 1 -1 -3.3 8.412

-3.2 1.978

-60

-40

-20

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4

-60

-40

-20

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4

-3
.1
6
6

-0
.8
5
8

0
.4
0
7

3
.6
1
6

-60

-40

-20

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4

1

2

3

4

5

6

7

8

I J K

x y y2

-38

-3.3

-1.2

0.8

3.5

sse

1

2

3

4

5

6

7

8

I J K

x y y2

-38

-3.3 8.412 70.76

-1.2 -5.21 27.11

0.8 -7.27 52.86

3.5 -10.4 108.9

sse 259.7

1

2

3

4

5

6

7

8

I J K

x y y
2

-38

-3.166 1E-03 1E-06

-0.858 0.002 6E-06

0.407 -0 2E-06

3.616 -0 1E-07

sse 9E-06
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We next use Excel’s Solver command to find a better fit, as illustrated in Figure 10(c). To do this 

we compute the sum of the squares of the y-values that result from our estimates for x. In the Solver 

we set the goal of making the sum of the squares (Cell K8) to 0 by varying the x-values (I3:I6). We 

set the Solver type to GRG nonlinear. To ensure that no two of the values converge to the same zero, 

we include constraints such as, I3  -3 and I3  -3.5 in the Solver’s Constraints section. We then 

press Solve to generate the estimates in Figures 9(c) and 10(c). As another valuable project, we also 

can implement traditional algorithms from numerical analysis [2] for computing eigenvalues and 

compare them with our results. 

Our Data Table provides us with one more reward – a way to find the equation of the characteristic 

polynomial. This is especially useful when working with larger matrices. In our example we note 

that the characteristic equation will be a polynomial of degree 4, f(x) = a0+a1x+a2x
2+a3x

3+a4x
4. From 

out Data Table display we select five points (x,f(x)) and solve the resulting system. We use x = 0, 1, 

2, 3, 4, with the data table giving f(0) = 4, f(1) = -12,  f(2) = -38, f(3) = -38,  f(4) = 48. Thus, 

 

f(0) = a0 

f(1) = a0 + a1 + a2 + a3 + a4 

f(2) = a0 + 2a1 + 4a2 + 8a3 + 16a4 

f(3) = a0 + 3a1 + 9a2 + 27a3 + 81a4 

f(4) = a0 + 4a1 + 16a2 + 64a3 + 256a4 

 

We then use Excel’s matrix multiplication and inverse functions to solve the system. We obtain 

f(x) = 4 – 5x – 12x2 + x4 and plot the graph of the function as a second carve in our earlier graph to 

see further that it agrees with the data table. This process is shown in our accompanying Excel files. 

 

       
 

We leave the Excel file in [S4] for readers to explore further. 

 

Example 5. Calculus: Newton’s Method 

 

Newton’s Method [4,8] provides us with a means for estimating the zeroes of a differentiable 

function. Thus, if y = f(x) is such a function, then we start with a reasonable estimate, x0, of a zero. 

Next, as illustrated in Figure 11(a), we find where the tangent line to the curve at the point 0 0( , ( ))x f x  

intersects the x-axis, 1 0 0 0( ) / ( )x x f x f x= − . This will generally be a better approximation. We then 

repeat this process, which usually converges quickly to the desired zero. However, sometimes this 

method may fail to converge. Also, in some cases, even a small changes in the choice of 0x  can 

produce very different points of convergence, as shown in Figures 11(b) and 11(c), using 

( ) cosf x x= . We investigate this phenomenon in an Excel model using a data table. 

 

1 0 0 0 0 a0 4

1 1 1 1 1 a1 -12

1 2 4 8 16 a2 = -38

1 3 9 27 81 a3 -38

1 4 16 64 256 a4 48

a0 1 0 0 0 0 -1 4 4

a1 1 1 1 1 1 -12 -5

a2 = 1 2 4 8 16 -38 = -12

a3 1 3 9 27 81 -38 0

a4 1 4 16 64 256 48 1
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    Figure 11(a). Newton       Figure 11(b). Newton (
0 0.30x = )  Figure 11(c). Newton ( 0 0.31x = ) 

 

Figure 12 presents a model for Newton’s Method in Columns A:D with ( ) cosf x x=  and 

( ) sinf x x = − . We enter an initial estimate 0x  in Cell B1. This becomes the first value for x in Cell 

B4. We find ( )f x  and ( )f x  in Columns C:D and the next value of x in Column B of the following 

row. Our implementation extends through an extensive number of rows, by which time Newton’s 

Method usually will have converged, say in Cell B24, to the resulting zero. Then in Columns F:G we 

create a data table for various initial 0x -values, using the resulting approximation from Cell B24 as 

the returned value.  

We can see that if our initial estimate is x0 = 0.30 then the algorithm will converge to x ≈ -4.71 

(i.e., -3π/2), while if x0 = 0.31 then it converges to x ≈ 7.85 (i.e., 5π/2). We can study this phenomenon 

further by using a data table in Columns F:G. We generate a range of the initial values, x0, down 

Column F with the resulting point of convergence x1 in Column G. We produce the source of the x1 

values for the Data Table tool in Cell G4 as =B24. 

 

                   

      Figure 12(a). Newton’s Method (Formulas)     Figure 12(b). Newton’s Method (Data Table)  

 

 

Figure 13. Points of Convergence for Newton’s Method 
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-2 0 2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

A B C D E F G

x0 0.31

n x f(x) f'(x) x0 x1

0 =B1 =COS(B4) =-SIN(B4) =B24

=1+A4 =B4-C4/D4 =COS(B5) =-SIN(B5) -7

=1+A5 =B5-C5/D5 =COS(B6) =-SIN(B6) =0.01+F5

=1+A6 =B6-C6/D6 =COS(B7) =-SIN(B7) =0.01+F6

=1+A7 =B7-C7/D7 =COS(B8) =-SIN(B8) =0.01+F7

=1+A8 =B8-C8/D8 =COS(B9) =-SIN(B9) =0.01+F8

=1+A9 =B9-C9/D9 =COS(B10) =-SIN(B10) =0.01+F9

data table

points

1

2

3

4

5

6

7

8

9

10

A B C D E F G

x0 0.31

n x f(x) f'(x) x0 x1

0 0.31 0.9523 -0.31 7.854

1 3.432 -0.9582 0.286 -7 -7.85

2 6.78 0.8790 -0.48 -6.99 -7.85

3 8.623 -0.6958 -0.72 -6.98 -7.85

4 7.655 0.1979 -0.98 -6.97 -7.85

5 7.857 -0.0027 -1 -6.96 -7.85

6 7.854 0.0000 -1 -6.95 -7.85

data table

points

-2 -3/2 - -/2 0 /2  3/2 2

--4

-3

-2

--

0



2

3

4



The Electronic Journal of Mathematics and Technology, Volume 13, Number 3, ISSN 1933-2823 

273 

 

To complete our model, we create an xy-graph from Columns F:G plotting markers to get the picture 

of Figure 13 showing how the point of convergence varies for a range of initial estimates x0. We 

leave the Excel file in [S5] for readers to explore further. 

 

Example 6 – Random Model of Coin Flip 

 

We can use Excel’s RANDOM function to simulate events and concepts that are included in the 

study of probability and statistics [10]. When combined with the Data Table tool, we are able to 

produce summaries of sets of repeated random trials. Here we create a simulation of 1000 sets of 100 

flips of a fair coin (i.e., with probability p = 0.5 of obtaining a head). 

In the model of Figure 14 we count the flips in Column A and generate random numbers between 

0 and 1 in Column B. We set the probability of success p (here p = 0.5) in Cell C2. Next, in Cell C5 

we use the =IF function to generate a head, “H”  if the current random number is less than p, and “T” 

otherwise. We then copy this expression down Column C. Next, in Cell C1 we determine the number 

of heads using the =COUNTIF function. Finally, we create a data table in the Block E4:F1004 to find 

the number of heads in each of 1000 repetitions. In Cell F1 of the data table we use the =AVERAGE 

function to compute the mean number of heads in the 1000 flips. 

It is also instructive to look at the distribution of the number of heads, n, obtained in the 1000 

flips. We create this summary in Columns H:I using the =COUNTIF function. Here we have 

computed this for 30 ≤ n ≤ 70 in order to produce the graph of Figure 16 that is broad enough to 

include all outcomes. We can simulate other binomial events by changing the value of p in Cell C2. 

In this case we may need to modify the range of our graph. Designing similar simulation models for 

other discrete and continuous probability distributions make good projects and illustrations for 

classroom demonstrations.  

 

               

               Figure 14(a). Coin Flip (layout)           Figure 14(b). Coin Flip (Data Table) 

 

 

 

Figure 15. Coin Flip Simulation (formulas) 

 

1

2

3

4

5

6

7

8

A B C D E F G H I

heads 53 mean ##### mean 0

p 0.5 sum 0

n rand coin rep head head num

53

1 0.716 T 1 30 0

2 0.261 H 2 31 0

3 0.411 H 3 32 0

4 0.366 H 4 33 0

1

2

3

4

5

6

7

8

A B C D E F G H I

heads 53 mean 49.89 mean 49.89

p 0.5 sum 1000

n rand coin rep head head num

53

1 0.716 T 1 46 30 0

2 0.261 H 2 59 31 0

3 0.411 H 3 46 32 0

4 0.366 H 4 44 33 0

1

2

3

4

5

6

7

8

A B C D E F G H I

heads =COUNTIF(C5:C104,"H") mean =AVERAGE(F5:F1004) mean =SUMPRODUCT(H5:H45,I5:I45)/1000

p 0.5 sum =SUM(I5:I45)

n rand coin rep head head num

=C1

1 =RAND() =IF(B5<C$2,"H","T") 1 =TABLE(,A2) 30 =COUNTIF($F$5:$F$1004,H5)

=1+A5 =RAND() =IF(B6<C$2,"H","T") =1+E5 =TABLE(,A2) =1+H5 =COUNTIF($F$5:$F$1004,H6)

=1+A6 =RAND() =IF(B7<C$2,"H","T") =1+E6 =TABLE(,A2) =1+H6 =COUNTIF($F$5:$F$1004,H7)

=1+A7 =RAND() =IF(B8<C$2,"H","T") =1+E7 =TABLE(,A2) =1+H7 =COUNTIF($F$5:$F$1004,H8)
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Figure 16. Typical Coin Flip Simulation (p=0.5) 

 

We leave the Excel file in [S6] for readers to explore further. 

 

Example 7. Two-Dimensional Data Table (Generalized Birthday Problem) 

 

The Data Table examples that we have presented so far have examined changes in a single 

variable. However, we also can vary two variables by using a two-dimensional data table. Here we 

look at a generalized version of the classical birthday problem [5,10]. As typically presented, in a 

group of m people chosen at random, we determine the probability that at least two people will share 

the same birthday. Here we present a model that will determine the smallest number, m, of people 

that must be selected for the probability that at least one duplicate exceeds p = 0.5. 

In fact, we generalize the process to the case of selecting m positive integers at random from the 

set of the first n positive integers (n = 365 gives the birthday problem), and finding the value of m 

that ensures that the probability of obtaining at least one duplicate value among the m selections 

exceeds a given probability, p. This is useful for illustrating the ideas of the birthday problem with a 

small class of size m by having the students in the class choose individual integers at random from 

the set {1, 2, , n} instead of using birthdays. We start with the model of Figure 17. 

First, we enter values for n (Cell A3) and p (Cell B3). In Column A we let k be a counter for the 

numbers of items that we are selecting.  In Column B we compute the probability, P(k)  that all of 

the first k selections are different. Clearly, P(1) = 1. Then, in computing P(k+1), we notice that the 

previous values must all be different, and that n–k will remain. Thus, the probability that the first k+1 

are all different is P( )( ) /k n k n− . We enter this formula in Cell B7 and copy the current entries down 

their respective columns. The probability that there is at least one repeated value among the first k is 

computed in Column D as1 P( )k− . We find the desired number, m, of values needed for the 

probability to exceed p in Cell C3 by using the form of a table lookup function as in Figure 17b.  

 

0 0 0 0 1 0
3 5 7

1011
14
19

34
31

51
56

6464

79

90
86
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5656

3634

1515
12

5
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0
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100
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        '            

    Figure 17(a). Birthday (output)       Figure 17(b). Birthday (formulas) 

 

Here =LOOKUP(B3,C6:C105,A6:A105)+1 looks for the value of B3 in the Block C6:C105, and 

returns the corresponding value in the Block A6:A105. This returns the value of m that gives the last 

probability that is less than or equal to the probability, p, that is being sought. Consequently, we add 

1 in order to find the first value that exceeds p. 

Now we create a 2-dimensional data table as shown in Figure 18(a). In Column F we create ranges 

of values of n down Column F and probabilities p in Row 2. We then use Excel’s Data Table tool 

(see Figure 19) to fill in the number of integers that must be selected to ensure the probability that 

there is at least one duplicate exceeds p. First, in Cell F2 we enter the formula =C3, to obtain that 

number from our choices for n and p in Cells A3:B3.  

 

    
           Figure 18(a). 2-D Birthday (start)                         Figure 18(b). 2-D Birthday (Data Table) 

 

 

 
Figure 19. Two Dimensional Data Table Setup 

 

As in Figure 19, we then use our selection device to highlight the array F2:L12 and select the Data 

Table command as before, this time entering the values for both n and p as shown in Figure 19. We 

obtain the output of Figure 18(b). For example, the number of integers that must be selected at random 

1

2

3

4

5

6

7

8

9

10

A B C

Output

n p num

365 0.5 23

k all diff dups

1 1 0

2 0.9973 0.0027

3 0.9918 0.0082

4 0.9836 0.0164

5 0.9729 0.0271

Input 1

2

3

4

5

6

7

8

9

10

A B C

Output

n p num

365 0.5 =LOOKUP(B3,C6:C105,A6:A105)+1

k all different duplicates

1 1 =1-B6

=1+A6 =($A$3-A6)*B6/$A$3 =1-B7

=1+A7 =($A$3-A7)*B7/$A$3 =1-B8

=1+A8 =($A$3-A8)*B8/$A$3 =1-B9

=1+A9 =($A$3-A9)*B9/$A$3 =1-B10

Input

1

2

3

4

5

6

7

8

9

10

11

12

E F G H I J K L

Probability of at least one duplicate
23 0.40 0.50 0.60 0.70 0.80 0.90
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E F G H I J K L

23 0.40 0.50 0.60 0.70 0.80 0.90

50 8 9 10 12 13 15

60 9 10 11 13 14 17

70 9 11 12 14 15 18

80 10 11 13 14 17 19

90 10 12 14 15 17 21

100 11 13 14 16 18 22

200 15 17 20 23 26 31

300 18 21 24 27 32 37

365 20 23 27 30 35 41

400 21 24 28 32 36 43

Probability of at least one duplicate

N
u

m
b

er
s 

 a
va
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b
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from a set of n = 100 integers that will ensure that the probability of at least one duplicate exceeds p 

= 0.70 is 16. We leave the Excel file in [S7] for readers to explore further. 

 

Example 8. Euler’s Phi Function 
 

The field of number theory provides many opportunities to employ a data table approach to 

classical topics. In this example we look at Euler’s phi function [6]. For a positive integer, n, φ(k) is 

the number of positive integers that are less than k and are relatively prime to k (i.e., that have no 

common divisors with k other than 1. Thus φ(6) = 2 since only 1 and 5 have no divisors other than 1 

in common with 6. In our example we use Excel’s greatest common divisor function, = gcd(). 

In our model of Figure 20(a) we enter a value for k in Cell A2. We then generate consecutive 

positive integers, i, down Column A and the value of gcd(i,k) in Column B. In Column C for each i 

we produce the number 1 if and only if only k and i are relatively prime and i < k. Then, in Cell B2, 

we compute φ(k) as the sum of the entries in Column C. The formulas appear in Figure 20(b). 

We then use the Data Table command using Columns E:F where the formula in Cell F2 is simply 

=B2. We augment our model to indicate prime integers in Column H as those integers, n, for which 

φ(n) = 1. Figure 21 is a graph of the Euler Phi Function, formed from Columns E:F of our model,  

with points (n,φ(n)) for n ≤ 1000. 

 

    
  Figure 20(a). Phi Initial.       Figure 20(b). Phi Formulas.      Figure 20(c). Phi Data Table 

 

 
Figure 21. Euler Phi Function Graph 

 

The field of number theory presents many topics that we can pursue similarly, including prime 

numbers, factorization, number bases, primitive roots, and indices. We leave the Excel file in [S8] 

for readers to explore further. 

 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F

k φ(k) n φ(n)

9 6 6

i gcd(k,n) count 2

1 1 1 3

2 1 1 4

3 3 5

4 1 1 6

5 1 1 7

6 3 8

7 1 1 9

8 1 1 10

9 9 11

1

2

3

4

5

6

7

8

9

10

11

12

A B C

k φ(k)

9 =SUM(C4:C1003)

i gcd(k,n) count

1 =GCD(A4,$A$2) =IF(AND(A4<$A$2,B4=1),1,"")

=1+A4 =GCD(A5,$A$2) =IF(AND(A5<$A$2,B5=1),1,"")

=1+A5 =GCD(A6,$A$2) =IF(AND(A6<$A$2,B6=1),1,"")

=1+A6 =GCD(A7,$A$2) =IF(AND(A7<$A$2,B7=1),1,"")

=1+A7 =GCD(A8,$A$2) =IF(AND(A8<$A$2,B8=1),1,"")

=1+A8 =GCD(A9,$A$2) =IF(AND(A9<$A$2,B9=1),1,"")

=1+A9 =GCD(A10,$A$2) =IF(AND(A10<$A$2,B10=1),1,"")

=1+A10 =GCD(A11,$A$2) =IF(AND(A11<$A$2,B11=1),1,"")

=1+A11 =GCD(A12,$A$2) =IF(AND(A12<$A$2,B12=1),1,"")

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H

k φ(k) n φ(n)

9 6 6 prime

i gcd(k,n) count 2 1 2

1 1 1 3 2 3

2 1 1 4 2

3 3 5 4 5

4 1 1 6 2

5 1 1 7 6 7

6 3 8 4

7 1 1 9 6

8 1 1 10 4

9 9 11 10 11

0

200

400

600

800

1000

0 200 400 600 800 1000
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Example 9: Greatest Common Divisor 
 

In Example 8 we used Excel’s built-in greatest common divisor function [6]. However, we can 

also use a data table together with Euclid’s GCD algorithm to produce these greatest common values. 

That algorithm can be expressed in a sequence of operations that we can implement naturally in a 

spreadsheet: Suppose that m and n are positive integers with m > n. Then, by the standard division 

algorithm, there are non-negative integers qi and ri so that  

 

m = q1n + r1 with 0 ≤ r1 < n 

n = q2r1 + r2 with 0 ≤ r2 < r1 

r1 = q3r2 + r3 with 0 ≤ r3 < r2 

 

and so on. Since the ri values are continually decreasing, eventually there is a first value of k for 

which rk+1 = 0. and rk is the sought for greatest common divisor of m and n. See [5]. 

In Figures 22(a) and 22(b) we present an Excel model for this algorithm. Using this in Figure 22(c) 

we use the Data Table tool to find the greatest common divisors of m and n for n = 1, 2, 3, … 

 

                     
    Figure 22(a). Euclid        Figure 22(b). Formulas  Figure 22(c). GCD Data Table 

 

We leave the Excel file in [S9] for readers to explore further. 

 

Example 10. Legislative Apportionment 
 

The process of awarding to regional subdivisions a number of seats in the legislature of a country 

often is based on population. Surprisingly, each of the usual procedures give rise to paradoxes that 

have been the subject of controversy and give rise to some interesting mathematics. Both the history 

and the mathematics involved are presented in [3]. Some other Excel models are contained in [5]. In 

Figures 23-24 we use Excel’s Data Table to examine one process, Webster’s Method, that was once 

used to allocate seats in the United States House of Representatives.  

In this model we want to allocate a number of seats (Cell B1) to four states (A,B,C,D), whose 

populations are given in Column B, with the total computed in Cell B7. In Cell D1 we either enter or 

create an estimate of the ideal size of seat, here =B7/B1. We then generate estimates of the number 

of seats in Column C by dividing each state’s population by the estimated seat size. This generally 

produces non-integers. Webster’s method initially awards each state the integer number of seats 

(Column D) to produce an initial total in Cell D7, with the number of non-allocated seats, n, computed 

in Cell F1. We next use Excel’s Rank function in Columns F to rank the remainders, and then in 

Column G add 1 extra seat to each of the states with the n highest ranks in Column F to produce the 

allocation for this number of seats. We can then use Excel’s Data Table in Columns I:M to produce 

the allocations to state for different sizes of the legislative body. 

1
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4

5

6

7

8

9

10

11

12

13

A B C D

Input m n

36 10

Output locate gcd(m,n)

Locate 5 2

Large Small Rem

36 10 6

10 6 4

6 4 2

4 2 0

2 0 #DIV/0!

0 #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0!

1

2

3

4

5

6

7

8

9

10

11

12

13

A B C

Input m n

36 10

Output locate gcd(m,n)

Locate =MATCH(0,B7:B28,0)=INDEX(B7:B28,B4-1)

Large Small Rem

=B2 =C2 =MOD(A7,B7)

=B7 =C7 =MOD(A8,B8)

=B8 =C8 =MOD(A9,B9)

=B9 =C9 =MOD(A10,B10)

=B10 =C10 =MOD(A11,B11)

=B11 =C11 =MOD(A12,B12)

=B12 =C12 =MOD(A13,B13)

1

2

3

4

5

6

7

8

9

10

11

12

13

A B C D E F

Input m n

36 10

Output locate gcd(m,n)

Locate 5 2

n gcd(m.n)

Large Small Rem 2

36 10 6 1 1

10 6 4 2 2

6 4 2 3 3

4 2 0 4 4

2 0 #DIV/0! 5 1

0 #DIV/0! #DIV/0! 6 6

#DIV/0! #DIV/0! #DIV/0! 7 1
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Figure 23. Apportionment Output 

 

 
Figure 24. Apportionment Formulas 

 

Using this model, we can see immediately an anomaly that arises.  If the overall number of seats were 

to increase from 41 to 42, then State A would lose a seat. Using the Data Table we can examine 

similarly other surprises that arise with other methods. We leave the Excel file in [S10] for readers 

to explore further. 

 

Conclusions 
 

Each author has used Excel extensively as a primary tool in teaching university classes in 

mathematics and in the computing and information sciences. Excel’s data table tool provides teachers 

with innovative ways to create illuminating mathematical models while equipping their students with 

beneficial skills in using a powerful mathematical tool of the workplace. The first author also used 

Excel and the data table to develop and teach live on-line courses from the United States for classes 

held at Divine Word University in Papua New Guinea. 

Our eigenvalue model from linear algebra provides a good pedagogical illustration of our use of 

Excel. It offers students an accessible way to examine the characteristic function of a square real 

matrix and to approximate its zeroes without first needing to study the classical algorithms of 

numerical analysis. If desired, one also can later implement naturally those numerical analysis 

techniques using Excel. 

In our classes students first use these and similar models to observe and investigate their 

underlying mathematics and subsequently follow up by working on assignments that use data tables. 

They also can employ data tables in their final course projects with their own applications.  

In this paper we have presented only a few topics that can be explored creatively using the Data 

Table tool. In particular, examples such as creating Bezier curves for numerical analysis, 

implementing the Sieve of Eratosthenes in number theory, and executing other legislative 

apportionment algorithms are discussed in [5]. Another interesting application lies in the computation 

of the probabilities of obtaining false positives in drug testing. 

 

 

 

 

1

2

3

4

5

6

7

8

A B C D E F G H I J K L M

Seats: 40 Size: 231 Allot: 2 Seats A B C D

State Pop Prop Int Rem Rank Seats 3 5 9 23

A 780 3.377 3 0.377 3 3 40 3 5 9 23

B 1100 4.762 4 0.762 1 5 41 4 5 9 23

C 2113 9.147 9 0.147 4 9 42 3 5 10 24

D 5249 22.72 22 0.723 2 23 43 4 5 10 24

9242 38 40 44 4 5 10 25

45 4 5 10 26

1

2

3

4

5

6

7

A B C D E F G

Seats: 40 Size: =INT(B7/B1) Allot: =B1-D7

State Pop Prop Int Rem Rank Seats

A 780 =B3/D$1 =INT(C3) =C3-D3 =RANK(E3,$E$3:$E$6,0) =IF(F3<=F$1,1+D3,D3)

B 1100 =B4/D$1 =INT(C4) =C4-D4 =RANK(E4,$E$3:$E$6,0) =IF(F4<=F$1,1+D4,D4)

C 2113 =B5/D$1 =INT(C5) =C5-D5 =RANK(E5,$E$3:$E$6,0) =IF(F5<=F$1,1+D5,D5)

D 5249 =B6/D$1 =INT(C6) =C6-D6 =RANK(E6,$E$3:$E$6,0) =IF(F6<=F$1,1+D6,D6)

=SUM(B3:B6) =SUM(D3:D6) =SUM(G3:G6)
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Supplementary Electronic Materials 
 

[S1] Excel file for compound interest. 

[S2] Excel file for Cramer’s Rule 

[S3] Excel file for trapezoidal rule. 

[S4] Excel file for eigenvalues.  

[S5] Excel file for Newton’s method. 

[S6] Excel file for random coin flips. 

[S7] Excel file for birthday problems. 

[S8] Excel file for Euler phi function. 

[S9] Excel file for greatest common divisor. 

[S10] Excel file for legislative apportionment. 
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